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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

. TECHNICAL NOTE D-401

ANALYSIS OF FRAME-REINFORCED CYLINDRICAL SHELLS

PART II - DISCONTINUITIES OF CIRCUMFERENTIAL -
BENDING STIFFNESS IN THE AXIAL DIRECTION1

By Richard H. MacNeal and John A. Bailie

SUMMARY

The stress distribution in, and adjacent to, an externally-loaded frame in a cylin-
drical shell is extended to include the effects of discontinuities of circumferential-
bending stiffness in the axial direction. These effects may be caused by nearby heavy
frames, planes of symmetry and antisymmetry, and free ends. Such problems can be
solved with the aid of the "transmission" matrix for a finite length of shell. A complete
derivation for the elements of this matrix is given, which defines the force-displacement
relationships at the ends of a finite length of shell. In addition to indicating exact
solutions, this report derives an approximate technique and applies it to a number of
practical problems.

. NOTATION
Aik matrix elements defined in equation (100)
2 2
a (m® - (L /L) /3
Bik matrix elements defined in equation (119)

[Cn(x)] matrix defined in equation (41)

[D] transmission matrix for a frame

E Young's modulus (lbs /inz)

fin abbreviations defined in equation (66)

G shear modulus (lbs /in2)

Hik matrix elements defined in equation (110)

loriginally prepared as IMSD 49733, Lockheed Missiles and Space Division,
Sunnyvale, California, and reproduced in original form by NASA, by agreement
with Lockheed Aircraft Corporation, to increase availability,
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moment of inertia of frame at x =4 (in4)
/5, (in%)

R2 + R 4

R 2" R 4

V-1

abbreviation defined in equation (58)

n /n2—1(1+23n)/2/-3/1+an

characteristic length (see glossary) = r[t'rz/i] / \/(—5_ (In,)
characteristic length (see glossary) = r /E.t'7G- 2 (in.)
distance from externally loaded frame

frame spacing (in.)

externally applied concentrated moment (in. - lbs)
element of transmission matrix defined in equation (18)
R1 + R 3

R1 ~-R 3

parameter defined in equation (38) of reference 1

index of harmonic depedance in the ¢ direction
externally applied concentrated radial load (lbs)
abbreviation defined in equation (116)

roots of the characteristic equation

abbreviation for Et'r Z /W + Z )

matrix elements defined in equation (30)

shear flow in skin  (lbs/in)

2 w2, / n2(W + Z,)

matrix elements (see equation [29] )

abbreviation for Et' r
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radius of the skin line (in.)

matrix elements defined in equation (31)

matrix defined in equation (41)

externally applied concentrated tangential load (lbs)
elementsof transmission matrix defined in equation (19)

skin panel thickness (in.)
effective skin panel thickness for axial loads (in.)

matrix elements defined in equation (32)

axial displacement (in.)

matrix elements defined in equation (120)
tangential displacement

abbreviation defined in equation (114)
radial displacement (in.)

matrix elements defined in equation (122)
matrix elements defined in equation (127)
matrix elements definedin equation (129)
matrix elements defined in equation (131)

axial coordinate of the shell (in.)
abbreviation defined in equation (96)

elements of transmission matrix defined by equations (27) and (102)

abbreviation defined in equation (116)

real part of the complex roots of the characteristic equation

real roots of the characteristic equation

imaginary part of the complex roots of the characteristic equation
""beef-up'' parameter = IO/ZiLc

shear flow applied to the frame (lbs/in)
see equation (60)

real part of T

imaginary part of T'




abbreviations defined in equation (34)

o,
in

] matrix defined in equation (41)

(2] matrix defined in equation (41)

GLOSSARY OF TERMINOLOGY

The terms "Input Impedance™, "Transmission Matrix'" and '"Characteristic Length"
are used in this report and are defined as follows:

Input Impedance is the relationship between the tangential displacement and shear
flow harmonic coefficients of the shell at the section of the loaded frame.

Transmission Matrix. The forces and displacements at one end of a finite length of
unloaded shell can be written in terms of their values at the other end. The square matrix
defining these relationships is the Transmission Matrix.

Characteristic Length. In this report there are two Characteristic Lengths, defined
as follows. L _is the distance required for the exponential envelope of the lowest order
self equilibratfng stress system to decay to 1/e of its value at x = 0, provided that the
skin panels are rigid in shear. I, is the distance required for the envelope of the lowest
order self equilibrating stress system to decay to 1/e of its value at x = 0, provided that
the frames are rigid in bending.

INTRODUCTION

In many practical shell problems, the shell is uniform in the circumferential
direction but varies discontinuously in the axial direction. These discontinuities may
be caused by free ends, rigid bulkheads, planes of symmetry or antisymmetry, and
frames whose bending stiffness is much larger than the typical frames. In Partl of
this report (ref. 1), a stress-and-deflection analysis is derived for frame-supported
shells on the assumption that non-externally~loaded frames could be "'smeared out'
in the axial direction, thus producing an infinitely long shell of uniform circumferential-
bending stiffness. This assumption is shown to introduce a considerable simplification
in obtaining the desired results for shells whose bending stiffness does not vary greatly
from frame to frame, except for the externally-loaded frame. A simple correction is
derived to account for finite frame spacing. The analysis enables tables of coefficients
for the computation of loads and deflections to be presented as a function of one param-
eter, vy, in reference 2.

Clearly, the model on which these results are based is inadequate where there are
large variations in frame-bending stiffness near the loaded frame. A shell with marked
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discontinuities in frame-bending stiffness can be looked upon as being a number of finite
lengths of shell (in which secondary frames are "'smeared out, ' as before) attached at
their ends to the concentrated frames that cause the discontinuities in stiffness. Free
ends, and planes of symmetry and antisymmetry cause similar discontinuities in
circumferential -bending stiffness.

In this report,the analysis of a finite length of shell is undertaken and the input-

output relations are derived. These relations are defined by the elements of a transmission

matrix. The transmission matrix for a frame is also given. Once these matrices are
known, the problem at hand can be solved in a simple and rational manner by applying
the physical boundary conditions to the relevant matrix elements.

In addition to indicating the exact solutions, an approximate method is proposed for
correcting the basic parameter, v , of references 1 and 2, to account for the type of
shell problem indicated. This enables the tables of reference 2 to be used directly for
a wide variety of problems by using a value of y modified as indicated in this report.

The derived methods frequently rely heavily on results obtained in reference 1, and
it is assumed that the reader is familiar with that report.

GENERAL FORM OF THE SOLUTION

If load is applied to a single frame, the remainder of the shell enters the solution
by means of the relationship between tangential displacement at the loaded frame and

the net shear flow applied to the loaded frame by the shell. Let the net shear flow acting

on the loaded frame be:
+ -
Aq = q(0 ) - q(o) 1)
The symmetric net shear flow harmonic coefficient is
-_— -— + p— -
Ag, =g (0) -q (o) (2)

By analogy with equation (49) of reference 1, the relationship between tangential dis-
placement and net shear flow will be:

'Vn(o) B r4 ' Kn
aq (0) -

+ () (3)
Eim® -n2 %
It can be easily proved that f(n) is a function of n such that

1 for non-end frame
Lim f(n) = constant ={2 for end frame Ly/Lc =0
n — o 4 for end frame Lr/Lc =0

provided that adjacent bays have ""smeared out'" frames.




Using the definition for the characteristic length, L,, we have r4 /i= 36 Lc4 /t'r2 .
‘Substituting this expression into equation (3), a more useful equation for f(n) is derived,
i.e.:

<|

3
n

e - 0@ ECE@® o m? 2
(n) = = . : (4)
a4, 36LC3 Ky

The proof lies in the fact that nearby discontinuities in the shell have less and less
effect on the higher self-equilibrating stress systems, and for very large values of n, even
a nearby discontinuity appears to be a large distance away. Hence, if the loaded frame
is not at the end of the shell, f(n) must approach one, because equation (3) is just equation (49)
of reference 1, with f(n) = 1 and Aqp = 2 qu (o) . If the loaded frame is at the end
of the shell, f(n) must approach two, if L/L, # 0 , because equation (3) is just equa-
tion (B.7) of reference 1 with f(n) = 4 aL. /Ky . which approaches two for n - e .
For L/ Lo = 0, 4 @n L approaches four as n — = .

Kn

The general form of the solutions for concentrated loads can consequently be written
from equations (66) and (67) of reference 1 as:

nP
o)

— Tr

A4y Z T v K, f(n) (5)
2

_ 1 T + 1-rn I

3 - =L Lo o

[ |

(6)

n nr

Expressions for forces and displacements in the loaded frame and loads per inch in
the shell are given in terms of q_ (o) and 4 (o) in reference 1. The ratios (in(o)/Aqn
and Eln(o)/A are found for a number of typical situations later on in this report. Hence,
complete solutions can be generated for each problem. This method, while y1elding an
exact solution, must be solved for each particular problem, since there are too many
parameters involved to cover the range of practical problems with a reasonable number

of charts or tables.

In equations (5) and (6) it is noted that f(n) always occurs multiplied by ¥ . This
raises the possibility that if f(n) does not vary greatly with n,it is reasonable to use
f(2) instead of f(n) for all values of n in equations (5) and (6). The great utility of such
an approximation, if valid, is that the loads and displacements in the loaded frame and
loads per inch in the shell can be obtained from the tables of reference 2 by using £(2) - v
in place of vy .

62011
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As an introduction to assessing the validity of this approximation, it is instructive
to evaluate the function f(n) = 4 ap L¢ /K, which applies to the problem of a reinforced
loaded frame at the free end of a semi-infinite shell. Utilizing the defining formulas for

an and Kn :
2
1+ n2-1 <}_r> —l
3 \L
C
2
L, 202 (ir)
3 L
C

The following table lists f(2) and the ratio f(n)/f(2) for various values of n and
L /L .
r’ e

[ Bl

fn) = 4

(7

Lt 1@ 1@ 8 ) L)

(2) [1(2) |12 1(2)
0 [4.00(1.00 [1.00 |1.00 .500
.3 [3.70] .908 : .826 .763 | .541
.5 3.33 1 .857  .772! .889! .600
L707(3.00 ! .820 ¢ .778! .7181 .667
1.00 }2.67 | .868 ; .816| .779 .750
o 2.00 |1.000 ’{1.000 1.000 | 1.000

Observe that for n < 5 , the maximum change in f(n) /£(2) is of the order of 30
percent. If f(2) were substituted for f(n) in equations (5) and (6), the net effect on the
solution would be very small, since:

(1) Thestresssystem for n = 2 tends to dominate the solution.

(2) Differences between f(n) and f(2) are of the order of 30 percent
for n = 5.

(3) Changes in v , and hence, changes in f(3), £(4) , etc., of the order
of 30 percent, produce small changes in the solution.

For the case of the non-end frame, it has been shown that nL:,mw fm) = 1.0.
It is reasonable to expect that for n = 3, 4, 5,etc., f(n) should lie between f(2) and 1.
Hence, it is possible to establish a criterion for the substitution of f(2) for f(n) in
equation (3). This criterion is tentatively taken to be that for a "non-end'" frame, the
substitution will be acceptable if 1/4 < £(2) < 4 , and for an end frame, the substitution
will be acceptable if 1/2 < £(2) < 8 . Otherwise it is necessary to compute the individ-
ual corrections for each significant higher-order stress system.

This simplified approximation permits the treatment of the effect of nearby discon-
tinuities by means of the basic tables (ref. 2), plus simple graphs giving £(2) as a




function of distance to the nearest discontinuity. For the derivations of these graphs
it is necessary to develop the concept of a transmission matrix, relating the input-
output loads and deflections for a finite length of shell. However, a note of caution
should be sounded at this stage. The tables of reference 2 are derived for shells that
are symmetrical about the loaded frame. Therefore, the loads per inch in the shell
computed by the approximate method indicated may be in error for shells that violate
that symmetry condition. The further from the loaded frame that the cause of un-
symmetry occurs, the less significant does the error become.

TRANSMISSION MATRICES

Boundary Conditions and Introduction of Transmission Coefficients

In addition to relationships between quantities existing at opposite ends of a finite
length of shell, relationships between quantities on the opposite sides of a point of
discontinuity must be written. The most general discontinuity to be considered is a
flexible frame shown in figure 1. In writing relationships between forces and displace-
ments, harmonic coefficients may be substituted for the forces and displacements
(ref. 1). The equations for the above figure are:

D, () = Pylx)) (8)

—_ . + _ -

Aq (x) =dq (x,)-q (x) ()
(%) = 'ﬁn(xI) (10)
V(X)) = V) = V) (1)

- Y (12)
V(x,) =—F———%A4q (x)) 1
n*’1 E Il(n3 _ n)z n 1

Equation (12) follows from equation (62) of reference 1, with P0 = 0.

Similar equations exist for the antisymmetric coefficients. For simplicity, only
the symmetric case is considered here, but the results also apply for antisymmetric
coefficients.

Important limiting cases are obtained by setting I1 equal to zero or infinity.

In some cases it is convenient to use, in the part of the shell to the left of the
loaded frame, a coordinate x increasing to the left (the coordinate system for the shell

62011
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to the right of the frame is rotated 180 degrees about a vertical axis). The only
difficulties arise in connection with boundary conditions at the loaded frame, which
are illustrated in figure 2.

The boundary conditions are:

p(0,¢) = p(0¥ -¢)

a(0,0) = - u (0% -¢)
v(0,4) = -V (0% -9)

For symmetrical loading:

p(0* -¢) = p(0* ¢)
q(0F -¢) = -q (0%, ¢)
u(0* -¢) = u (0%, ¢)
V(0¥ -¢) =-v(0% ¢)

With these substitutions, trigonometric terms can be eliminated, leaving the
following relationships between harmonic coefficients:

p (0) = p (0%
£g_ = 4 (0) + T (o*)
ﬁn(o) = —ﬁn(o*)

<
=
—
=X
\

Vn(O*)

(13)

(14)

(15)

(16)

(17)
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The relationships between force and displacement harmonic coefficients at the

ends (x = 0 and x = £ ) of a finite segment of shell are conveniently given by a
4 x 4 matrix of transmission coefficients having the following form:

Py(H) My, My, Mg My p,(0)
q,(0 Mgy Mgy Mys My, q,(0)
- (18)
uy (o) Mg, Mg, Mgy Mg, u,(0)
Vald) My My, Mg My, Va0

This form of the relationship is convenient for theoretical discussion and as a
starting form for analysis. Later, the following form will be introduced:

- , 1
q (2
q, (%) T T, Ty Tq q,,(0)
Et'r - Et'r -
=5 a4 T, T, T, Tg Etr g (o)
= ST e (19)
rs r_
n Pn(l) T9 T]O T13 T14 " pn(o)
2 ‘ 2
Et'r” 3 Et'r“ -
v o) Ty Tz Tis The o V00

The boundary conditions of an unloaded frame can also be written in the form of a
transmission matrix. Substitute equation (12) into equation (9) and write equations (8)
through (11) as a single matrix equation:

— + - -
PR 1 0 0 0 p,(x,)
3 2
.+ -EI1(n"-n) — -
q,(x) 0 1 0 | | Gy
_ o+ _ - (20)
un(xl) 0 0 1 0 un(xl)
Vn(x]*) L 0 0 0 1 v ()
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11

R'elationships between quantities existing at any two locations in the shell can be
obtained by multiplying transmission matrices for the intervening frames and shell
lengths (figure 3).

Let & (x) stand for the column of four harmonic coefficients at x . Let trans-
mission matrices for the bays be represented by [M]; and [M],.

Let transmission matrices for the frames be represented by [D],, [D];, and [D],.

Then

|# 5| = [0, (M1, [0], [M], [D], |s (o) @)

In this part of the report, transmission coefficients are derived for a finite length of
shell. The use of such coefficients for the solution of problems is treated in the third
section.

GENERAL PROPERTIES OF TRANSMISSION MATRICES

It is evident, from Maxwell's reciprocation law, that not more than ten of the
coefficients given in equation (18) are independent. If the equations of dependence can be
discovered, they can be used to eliminate calculation of some of the elements (if they
are simple equations) and to check the operations involved in obtaining overall trans-
mission matrices, such as equation (21). The properties of transmission matrices are
discussed briefly in reference 3, pages 76 to 87. The inverse of a transmission matrix
can be obtained without numerical computations as shown in reference 3. In order to make
use of this property, equation (18) must be slightly rewritten:

Py ) My My, My My -p,()
qa,¢4) My My, My My, 9,0
= (22)
o, ¢) Mg Mgy Mgy My, ()
Vo L_M41 Mgy Mgz My v,
Then, according to the result given in reference (3):
By | [ Mgy My My My (%)
a0 | _ | Mgy My M, M, a,(4 (23)
U, Mgy Mgy My, ™My u, ()
v, [_'Msz My, My, My, V)
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Applying this result to equation (19), there results:

_ r 7
q_(o) - - q (£
0 T Tia Ty Ty q,(£)
Et'r — Et'r _
u, ) Tys Ty Ty Ty ——1u_(£)
n n _ n n (24)
Tr— r— ,,
1 Pp© T2 ~Tyo Ty Ty n Pad)
2 2
Et'r“_ _ _ T Et'r< —

If the object to which the transmission matrix refers is symmetrical with respect
to its ends, the inverse of the transmission matrix may also be obtained by principles
of symmetry. For example, consider a finite length of shell, loaded as shown in view (a)
of figure 4.

The loading and displacements are symmetrical with respect to the plane ¢ =0
so that the loading system shown corresponds to symmetrical harmonic coefficients. If
the shell is rotated through 180 degrees about a vertical axis, it will appear as in
view (b) of figure 4.

If the directions of q(£), u(¢), q(o) and u(o) are reversed in view (b), the loading
will be the same as that in view (a),with (o) and (£) interchanged. Since the appearance
of the structure is indistinguishable in the two cases, due to its symmetry, equation (19)
may be used with the following interchanges:

q,,(¢)=—>-q (0)

n n
The result is:
q,(0) —Tl T, -T, -T, ] q,(2)
ELT 5 (o) I T, Ty w0 (25)
17,0 To Ty Tis T 5 P
Ent"Qr_z‘VTH(O) LTU 'le Tis Tie E:Eﬁ—vn( h

L£INT=T



° 13
g By comparison of equation (25) with equation (4), the six following identities
result:
Tg= T
Ts= T3
Tu= Ty
- (26)
T13 = Ty
Ty= T
Tg = T
?\I‘ This list does not exhaust the dependent relationships between transmission co-
o efficients. The assumption of symmetry introduced three additional constraints in
'_|' addition to the six introduced by reciprocity. A search for these additional relation-
=1 ships is not made. For any particular type of object, additional accidental relation-

ships between coefficients may exist. The six relationships given above are used in
later sections of this report.

Input Impedance for a Semi-Infinite Shell

For a semi-infinite shell segment, relationships must be obtained between the four

quantities at the near end of the shell.

These relationships have already been obtained

in Appendix B of reference 1.

They are, rewritten in the style of equation (19):

pam-

<

4 2
_E_t'_ri— ) 72 Lcan 6 Lc 4.0
n2 n n4(n2 _ )2 nZ(nZ -1 n
T 612 -1212 0
Et'r - (0) c ¢%n L % (o)
n ‘'n 2 2 2, 2 non
n"(n” - 1) n (n"-1)
- -
Equation (27) is sometimes more convenient in the form:
Val® _| %0 12 4,
w0 Zo1 22 P, (0)
where 7212 o 6L2
VA = = -7 = c (273.)
___Lth_ —y—
11202 ey 12 21 " m®-1)Et'r
and
12 L2a
Z = c™n

22 nz(n2—1)Et’
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Transmission Coefficients for a Finite Length
of Shell Without Stiffening Frames

These transmission coefficients have already been obtained in Appendix A
of reference 1. Rewrite equations (A.6), (A.7), (A.8) and (A.9) of reference 1
in the style of equation (19):

B ]
q @) 1 0.0 0 q,(0)
Et'r .. 1 22 1 2 0 Et'r -~
=t r 2 12
= U (%) > ‘ un(O)
= : o (28)
r _ ' r —
L Y £
0 Pn( ) 2 0 1 0 - n(o)
1] 2 2 1 ' 1 2
Et; v ) (an _rzﬂEt) P éz 1 Etzr 3(0)
n n n- Gt n
L i -

Note that the identities of equation (26) are all satisfied. Note also that the coefficients
all have the dimension of various powers of length.

Transmission Coefficients of a Finite
Length of Shell with Stiffening Frames

The transmission coefficients are obtained by solving the differential equations for
a shell with "smeared-out" frames and evaluating the constants of integration in terms of
ﬁn(o), qd (o), 'ﬁn(o) , and v_(o) for the symmetrical case. The constants of integration
are exa&]y the'same for the antisymmetric case. In reference 1 this is done for a shell
extending to infinity and, in so doing, terms with increasing exponential factors are
eliminated. In treating a finite length of shell, all four roots (P, , P._, P, , and P, )
of the characteristic equation must be retained. The following di&&ramsn shoW the location
of these roots.

Complex roots Real roots
Im
P P
4n . - an_,@ 1n

Bn

l Re. Pan Py Pon  Pin
«—Qopn—
—— Q=)

P3n ) P2n N

—— a3 ”
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_n,_<_,N_ n > Nc
Pln= %" i Pin = %
P2n = % jBn P2n = %on
Pon = %3y = -8y Pan= "%n TPy
P4n = -an+jﬁn = -P2n P4n=_a2n = -P2n

Each of the four quantities, P _(x), § (x), U_(x), and V_(x), can be expressed as

exponential functions of the roots of'the chiracteMstic equaﬁons multiplied by un-
determined coefficients:

i ) P x
By (%) Q Q @ 9 e '
~ Pan
qn(x) Rl Rz R3 R4 e
= P3nx
un(x) S1 S2 83 S4 e
= P4nx
v, ) v, U, U, U, e

The number of undetermined coefficients can be reduced to four by means of
equations (17) through (19) of reference 1.

The four general solutions satisfy these equations independently. Let P

(29)

15

stand for any one of the four roots, and Q., R,, S., and U, stand for the corrégponding

undetermined coefficients. Then, by substitution of a column of equation (29) into
equations (17) through (19) of reference 1:

nRi
Q =773,
in
S, = __1__ . Q - __ni
i Et'P, i 2
in

'
Et'r Pin

(30)

(31)
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These results may now be substituted into equation (29). Some simplification
results if common factors are cleared to the left-hand side, and if rows are interchanged:

-
T Plnx
q R
qn(x) 1 1 1 1 1 e
P x
Et'r i (x) A 1 1 1 R._e 2
n n 1:,2 P2 1;,2 PZ 2
1n 2n 3n 4n
= P, x (33)
s 1 0 1 1 Rge >°
nn Pln P2n P3n P4n
Et r2 = %in %n %3n %n P4 X
a®) B 5. P Rye
n 1n 2n 3n 4n
where 9
4 L
R B T
1n P2 nz ’
in
(34)
2
. 1 4 Lr
°on .2 2 '
P2n n
It is convenient to substitute hyperbolic functions for the exponential functions.
This is aided by the fact that, whether the roots are real or complex, P:3 =-P
and P, =-P_ . Hence, n In
4n 2n
Pla® PapX
R] e + R3 e = N] cosh me + N2 sinh Plnx (35)
where
N1 =R1+R3 and N2 = RI_R3 (36)

62011
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Similarly,
Pznx P4nx
R2 e + R4 e = J1 cosh P2nx + J2 sinh Pznx (37)
where
J1 = R2+R4 and J2 = RZ-R4 (38)

Other terms in equation (33) can be similarly combined. The various coefficients are:

Quantity Coefficient of cosh P 1nX Coefficient of sinh PInx
e | PR N B RN,
n 2 2 2 2 2 2
Pln P3n 1:>1n Pln P3n Pln
5 (x) ——L—R + i = N2 Rl _ R3 - N].
n Pln P3n Pln Pln P3n Pln
R o R.o o, N R.o R,.o o, N
I e e o St
1n 3n 1n in 3n 1n

Combine these results into a new matrix equation:

ﬁn(x) cosh Plnx cosh P, X sinh P x sinh P,.X | N1

E tr;r u (%) ;12— cosh P x —Pl—zcosh P, x PLZ sinh P, x ;12-sinh Py X Iy
_ 1n 2n 1n 2n

ﬁ b, (x) ﬁsinh P, x %sinh P, x i cosh P, x P21n coshP, x | |N 9

E—Zgﬁ v ) %lli sinh P, x %‘; sivh P, x %lfi coshP, x ;—22'-; coshB, x | |3,

(39)
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The 4 x 4 matrix appearing in equation (39) can be factored into two matrices,
each of which is conveniently written in partitioned form:

q,(x) N;
Et'r -
=21 (x) A] o [c,=)] [s,] I
= 40)
= 5,00 o [@]]|[s,@] [c,®] N,
2
Et'r -
—5—V_(X)
n2 n J2
where
1 1 1 1 ]
2] = 1 Rk (el =| Py, Pon
2 2 %in %on
P P e e
n 2n Pln P2n |
41)
cosh Plnx 0 ' sinh Pinx 0
C x)}= s ] =
[ n ] 0 cosh P2nx [ n J 0 sinh P2nx

The four undetermined coefficients are evaluated in terms of q
and v (o) by setting x 0 in equation (40).
and the hyperbolic cosine is unity. Hence,

q (o), u (o), p (o),
For x =0, the hyper%olic sine is" zero

q_ (o) N
Et:n - [ ' “2
o !
T —
n pn(o) N2
e = [e] (43)
lr —
2 Vh(©) Iy
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[A]

Invert these equations and write

-1
and [Q]

The complete result for transmission coefficients is obtained by substituting

g o
A 0 Etr —
_n'r'un(o)
= r —
-1 ﬁpn(o)
2
0 [Q] Et'r2 7. (0)
2 n n

are easily evaluated using the definitions of %in on’

[
2 2 2
1 P Pon _P2n_ o
A == |
PZ -P S S
In 2n P2
~ "1n '
i
_ 1;,2 PZ 1in “2n . Pln
_ in 2n
[Q] = 3 2 p ’ p
in 2n 2n01n | 2n

from equation (44) into equation (40):

q,(x)

Et'r -
n 3,

DIlC,wIR]  [A[s,e0][] |
[2][s,001[x] " [e][c,e][e]”

and ¢

19

(44)

(45,

(46,

(47)




20

Evaluation of Transmission Coefficients for Real Roots

The roots of the characteristic equation are all real for n = N . In this case,
P._and P may be replaced by « and « in the results of thecpreceding section.
Tlligal terms th the square matrix on tllllél right s12d% of equation (47) are easily evaluated
by carrying out the indicated operations.

The terminology of equation (19)is used in identifying coefficients, and the
identities of equation (26) are employed to reduce the number of calculations.

For real roots, n = N

62011

c
_ _ 1 1
T1 = T16 = K[———cz osh alnx 5 cosh a2nx:] (48)
a o
2n In
T2 = T14 = K[—cosh alnx+ cosh aan] (49)
T, = T - K cosh a, x - cosh a, X (50)
3 15 2 2 In 2n A
o, o
in 2n

- - o1 1
T4 = T13 = K [ 5 cosh amx+ 5 cosh aznx] (51)

aln CY2n
_ _ _ R . ‘
T5 = T8 = T10 = K [ > sinh alnx + sinh aan ] (52)
in 2n
T6= K[-alnsmh alnx+a2nsmh aznx] {53)
%n
T7 = K [ = sinh alnx - sinh aznx ] (54)
1in 2n
T =T, = —% o. sipha. x-o, sisha, x | (55)
9 12 2 2 1n In 2n 2n
a, o
in "2n
T =—-K—— o¢. ¢, sinha, x~a, g, sinha_ x
11 2 2 in "1n 1n 2n 2n 2n
a, «
in "2n

(56)
K, @ine Yo Ty and Ton are expressed in terms of the shell quantities, as follows:

@y and a,, are given in equation (32) of reference 1.
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V]

1
2 4 5
%1n .1 nvn -1 n2—1(]"r)i/(n2-1)2(h')_1 2
“2n L Ve 3 L L

(57)
%0 and Ton defined in equation (34) are, by virtue of the functional form of « 1n
and « on’
2 2
=_;_4Lr=__l_ and 1 _4Lr=_ 1
%1n 2 2 2 Pan T 2 2 2
%1n 2n 2n %1n
2 2
k2 2 %n _nfe®-y . 1 (58)
B 2 2 7 2 D)
aln_a2n 12 Lc a -1
and 2
K _ 3 Lc
2 2 2,2
% ot2n n{n - 1)an
Evaluation of Transmission Coefficients for Complex Roots
The roots of the characteristic equation are complex for n < Nc
In this case:
Pon = aytiB,
and
= - - *
Pon = %18, = Phy (59)

where Pl’"n means the complex conjugate of Pln'

Equations (48) through (56) of the previous section are valid with the substitution,
=a + jﬁn and @y =a - jﬁn , because no special properties of the real roots were

employed. If this substitution is made, it is observed that the second term inside the
bracket in the formula for each coefficient is the conjugate of the first term.

aln
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Let T be the value of the first term. Then the value of the bracketed expression
is
Tr-r*=2{Im ' T (60)

where Im - T' is the imaginary part of T .

The factor K has the following value:

2 2 2 2.2
K = Pln P2n _ (ozn+ Bn) (61)
- 2 _ 2 4ja B
Pin Pon nn
Hence,
2 2.2
. (@ +8) I
K(-T% = —553 m:*T (62)
n"n
and
K(r-1r% . Im-T
P2 P2 T2 aan (63)
In " 2n
The hyperbolic functions become:
! cosh (ozn + jﬁn)x = cosh o X cos an + j sinh o X sin ﬁnx (64)
sinh (ozn + jBn)x = sinh @ X cos an + j cosh o X sin ﬁnx (65)

| To simplify the writing of the equations, use the following abbreviations:

fln(x) = cosh o X cos an; f2n(x) = sinh o X sin an

(66)

f3n(x) sinh @ X cos ﬁnx; f4n(x) cosh o X sin an

The factors Im I are evaluated below for each of the terms in the transmission

matrix. 0 0

(£, +if, ) (o - + 2

T: T = I 2n2= . in 2j0;nﬁn)(f +3f, )

. in 2n
(o, -8 (a, *By)

(67)
Im: -1 = ——2—L—2——2'[20!Bf1 +((12—ﬁ2)f2]
(an P n‘n 1n n "n’ "2n

")

A20T1
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T.: T = - _+3f )
2 1n 2n (68)
Im'r-= —f2n
T3 r :fln jon
(69)
Im.T = f2n
T,: ro= — i1,
(@, ¥ 18) In n
(70)
1 2 2
Im'r=-————[2a £ - (a - f J
(OIEJ’B;?;)Z an 1n n 3n) 2n
f, +3if,)
TS: r = - 3n 4n
(@ +38)
n n 71)
2 2
Im-'T = (pnfsn-anf4l\)/(an +B.)
T6: r = '(Otn+13n)(f3n+1f4n)
(72)
Im-T = 'an3n_anf4n
o
2n
Tq: F'= @ +yp) Un*)ig
Now,
4L2 az —Bz 4L2 2a_ B
N S T L Pk 2z -2 )3 33
n (an j'Sn) n (ozn +Bn) n (an+ ﬁn)
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The equations that follow can be simplified by writing:

Oon = Re-g-jJIm- o

%n =Re-og+jIm-o

) r (Re.g-jlm-a)(an - jgn) . ¢ )
S = +
0[2 + B 2 ( 3n L 4n

n n

Im- -1 =

- f3n (BnRe-cr+ anIm-o) + i, (an Re o-B Im- o)

2 2
+
%n Bn

Ty: T = (a + 1B +11,)

Im*T = Bn f3n * an f4n

Tp T = (@ * i )Re o+ Tm o)y + i)

Im-T =f, (@ Im 0 +g Re o)+ f (@ Re-o- B,

Hence, the transmission coefficients for complex roots are:

2 2
T . (@, -B ) ;
T. = = 4 —_——
1 16 in Zanﬁn 2n
2 2.2
- (o + 6y)
T, =T = ———
2 14 20 _p 2n
n"n
1
T, =T .= f
3 15 2an_ﬁn 2n
(@2 -p2)
T =T = n n
4 13 In 2a B, 2n
(az+ﬁ2)

T - - Zn "n’ -
Ts = Tg = Ty 2a B [ By Tan anf4n]

(74)

(75)

(76)

(77

(78)

(79)

(80)

(81)

(82)
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(01121 +-6r21)2
T, = [_Bn ty - f4n] (83)
n “n
2 2
. (@ +B) .
_— Z—OTn—B—n—— [ (@ Imo + g Reo)f, + (¢ Reo-p ImG)f4n] (84)
- - —1
T9_T12 T 20 B [an3n+anf4n] (85)
n"n
o1 -
117 Za B [(an Mot By Red) gy T lagRea p, Ima) f4n]
(86)

The function of «_and 5n appearing in these equations are evaluated below in
terms of n, Ly, L and a_. o and B are given in equations (29) and (30) of
reference 1, as: °© n n n

f 2

n (

1 n n -1 $

= e—— . 1 a

Bn C
21.2
Reo = - 87
A (&)
2/ 2
6L 1—an
Imoe = - ——c—-——'—-—z 9 (88)
n“{mn - 1)
2 _p2
oy B _ ay
20 B - (89)
®n n 1-21121
2 2
an +Bn = 1 (90)
20 B 1-
nn an

2 2)2 9. 2
(O‘n +B4) = .n_é(nL_E_l) __l__z- (91)
20,8, c J1- a;

612
1 = — zc R (92)
2a_ B n“(n®-1) ‘/1 _ a2

nn

fln’ f2n’ f3n and f4n are defined in equation (66).
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Using the equations derived, the transmission coefficients can be computed for
each value of the harmonic index, n . This has been done for n=2 and L_/L = 0.4.
The results are shown in figure 5. It remains to be shown, by means of a ndmb&r of
simple but useful examples, how these coefficients are used in the solution of practical
problems.

EXAMPLES OF DISCONTINUITIES NEAR THE 1LOADED FRAME

Discussion

In the first section the foundations are laid for solving shell problems involving
certain discontinuities in the shell. It is shown there that such problems can be
approximately solved by use of the tables of reference 2, once the function £(2) is
known. The limitations of this simplification are discussed in the first section. While
the major effort is devoted to the case of the harmonic index equal to 2, it is desirable
to indicate the exact solutions at the same time. These consist of a superposition of
the stress systems for each n. In practice, adequate convergence of the Fourier
series is obtained using only a few values of n. For this reason the example problems
are solved in terms of the harmonic index, n, and specialized to n= 2 for the numerical
calculations that yield the approximate solution.

In this section solutions are derived in the form of matrix equations, giving the
input impedance for a variety of problems involving discontinuities near the loaded frame.
1t is implicitly assumed in the derivation of the tables of reference 2 that the shell is
symmetric about the loaded frame and therefore q (o+) = g (o-) = Aﬁn/Z . Ifthe
loaded frame is at a free end, either q (0~) or q (+) equal!s1 Agq . For any
condition between these extremes the ratio of g (cclf)‘ to Ad_depends on the problem
and is a function of n . Hence, when the approximate solgﬁon involving the modification
of y and use of the tables of reference 2 is utilized, the loads per inch in the shell may
be in error when the shell and frame stiffness is not symmetrical about the loaded frame.
In the following text the results for symmetric and antisymmetric externally applied
loadings are identical and only the symmetric case is considered. In all cases the shell
elements are taken to have a circumferential-bending stiffness per unit length, due to
""'smearing out' all the frames except those specifically mentioned as producing the
discontinuity and the externally loaded frame.

Two Rigid Bulkheads Symmetrically Placed About the Loaded Frame

The loaded frame is at x = 0 ; the shell extends to = in both directions and has
infinitely stiff bulkheads at x = =/ (figure 6). The transmission matrix giving the
relationships between force and displacement harmonic coefficients for the finite shell
lengths is given in equation (19). The transmission coefficients are given in the second
section for n > Nc’ and n < Nc .

Relationships between the force and displacement coefficients at the end of the
semi-infinite shell are given in the second section (equation [27]) .
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The equations of connection of rigid bulkheads are taken from the second
section and are as follows:

]

B( £ =B (£) i o (%) = 1 (2)
(93)

q () = &G (1) +q(8) ;T (UM = V()

Boundary Conditions

Due to symmetry, it is necessary to consider only one side of the shell. For the
same reason:

ﬁn(o) =0 (94)

The bulkhead, rigid in its own plane, prevents tangential displacements, i.e. :
v *) = ¥ =
vn(l ) vn(l) 0 (95)

Using equation (95) in equation (27g)we have:

Z .7
T (1% = 12 21 =«
un(l ) [ Z22 Z pnu )

Zp (2% (96)
11 n

From equation (93) it is seen that equation (96) can be written as:

u(8) = ZB (£) (97)
Solution

Substituting equations (94), (95) and (97) into equation (19) we obtain the following
matrix equation:

— -
- _
(%) T, T, T3 Tg q,(0)
Et'r -
=L z.5.0) T, T, T, T, 0
L5 ) i T T T T L3 (0) )
n Pn 9 10 13 14 n pn
Et'r2 -
0 Th Tiz Tis Ty 5 Vnl©
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Multiplying the third row by Et'Z and subtracting it from the second, thus
eliminating the third row, equation (98) is simplified to:

_ B ] _
50 T Ts Ts 9,
r —
— - - ~ Ft! S
0 = T3 Et'Z T9 T7 Et'Z T13 T8 Et ZT14 5 pn(o) (99)
2
Et'r” —
0 T Tis T16 2 Va©
Inverting this equation we obtain:
— =
= (o -
() Al A A LN
r —
i 21c>n(0) = | Ay Ay Ay 0 (100)
Et're _
2 (@ I Agy Az Asg 0
In any case of symmetry about the loaded frame,
_ Aq
Q0 = 5+
v_(0) 2 Ag
Therefore, the Input Impedance =_Arn(_ = .__11_2 . A—l (101)
' 40O gy 11

where
A11 = [ T16(T7 - Et'Z T13) - T15(T8 - Et'Z T14) ] / | T |

A31 = [ "1‘15('1‘3 - Et'Z T) - Tn(T7 - Et'Z T13) ] / | T|

and | T | is the determinant of the square matrix in equations (99). Clearly, it is not
necessary to evaluate this determinant for the solution of this problem.

Substitution of Input Impedance given by equation (101) into equation (4) gives f(n).
Figure 10 shows f(2) plotted as a function of £/L  for L /L = 0.4. As a checkon
the basic premise of the first section that f(n) carff be repl£ce3 by £(2), i.e.,
f(n) /f(2) # 1.0, it can be easily shown that for this problem, £(2)/f(3) = 0.70 for £/L¢ =1.0.
Satisfactory agreement was obtained for the following problems as well.

62011
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A Rigid Bulkhead on One Side of the Loaded Frame

The shell, frames and coordinate system are shown in figure 7. Since there is

no symmetry about the loaded frame, ﬁn(o) X Aqn/z and the shell on both sides of
the loaded frame must be taken into account.

Therefore, there are three elements of shell governed by three sets of equations,
as given below, to be considered.

For the finite length, 0 < x < £ :equation (19) holds.

For semi-infinite shell extending from £ to o ,

-

DA 1%y 2y qa,(£)
o _ (102)
un(l) Z21 Z22 pn(z)
In the case of the semi-infinite shell from x¥ = 0 to =,
— * = *
Vn(0® 2y, %y, a,(0%)
= (103)
— * iy %K
,(0%) Ez1 Zgg Py(0™)

Boundary Conditions

In the second section, the boundary conditions relating the harmonic coefficients
are discussed and the results are quoted here:

At x = x¥ =0

b (0% = P (o) ; W (0% = - T (o)
_ _ (104)
V(%) = ¥ (0) ; q (0% =Aq, (o) - G (o)
At x = 1
BB = B, ; () = T ()
_ ~ _ (105)
v, (8 = v () ; T (#) = Bq (8 + G ()
The rigid bulkhead prevents tangential displacements, i.e.,
v = v (8 =0 (106)
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Solution

Using boundary condition of equation (106) in equations (102) allows U_(#£ to

be expressed in terms of bn(l) .

gives:

lin(ﬂ) = [ 222 -

Z

Y/

12 21
Z

11

] B, (%)

Substituting equations (105) into this exppession

(107)

Substituting equation (107) into equation (19), multiplying the third row by Et'Z and
subtracting from the second, we have :

q.(8) T,
T3 -Et'Z T9 T4
r- =
n pn(l) T9
0 T11

T, T, T,
-Et' _Ft! _ R
Et ZTIO T7 Et ZT13 T8 Et ZT14
TlO T13 T14
Tio Tis Ti6

-

q,(0)
E:r ﬁn (©)

-5,

tp2
Et'r 7 (0)

n

(108)

Apply boundary condition (104) to equations (103), and rearrange the latter as:

u (o)

p,(0)

—

-

z.Z.. 2
11722 22 — =
- .o (0) - Aq (o)
21 Z12 le 4, N
- - (109)
1
23 1 -
Z ' Z V()
12 | 12

By substituting equation (109) into equation (108), ﬁn(oL and ﬁn(o) are eliminated

and the right-
Et'r2 ¥p(0) / n

matrix equation is simplified to:

a_(0)
0

—

H
Hll 12
H21 H22
I-131 H32

nd-column matrix will contain only
If, at the same time, the third row of equation (108) is deleted, the

13

H23

33

(o) ,

Gn(O)
g, (0)

Et'r2
n2

Aq (o),

n

v_(0)

and

(110)

62011
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where }
, Z. . Z rZ
; Etr 11722 11
H. = T+—[Z ——-———IT +—212 T
11 i 1 " n 21 z, 2 nZ, °5 ]
g - |_Etr ‘z 211 %9 ] r 2 T
12 i n 21 le 2 nle 5
[
H,=| T - 222 TeB_ 05
1
13 i 6 zZ, 2" Etr Z,
) 7 .Z rZ
Et'r 11 22
- - 1 - a -
H, = [(T,-Et'ZTy) + = l221 > (T, -Et'ZT ) +—1- (T -Et'ZT 9 |
] 12 Z12
3 Z. .7 rZ
_| _Etr _M11%2 e ™ e
Hyp = n _|Z21 Z '(T4 Et Z'T10) nZ (T7 Et ZT13)
L 12 12
[ nZZZ n
= - \ - - 1 - 1
H, o (Tg~Et'ZT, ) - (T, - Et'ZT, ) 7z, +Et'rZ12 (T, - B'ZT ;)
[ Z Z rZ
Et'r 11722 11
H,. =| T+ Z,, - ——==<} p AL 7
31 i 11 n [ 21 z, l 127 nZ;, 15 }
- | _Etr lZ ety ‘ - et -
32 e 21 Z, | 12 nZ, 15
[ nZ
22 n
H,=|T,. - T+ =2 — T
33 i 16" rZ, 127 EthZ, 15 ]

The inversion of equation (110) yields the solution for the Input Impedance as follows:

Vhl0) 2 91 Hag ~ Hyy Hml

Aqp(0)  gy'y2 Wy Hog - Hyg H31]

This equation substituted into equation (4) gives the f(n) which is needed for the
general solution of the shell problem. Figure 10 shows f(2) as a function of .8/1_ for
L /L = 0.4 . (curve for Y = o)

(111)
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A Heavy Frame on One Side of Loaded Frame

This case is similar to that of a single rigid bulkhead; the difference being that
¥_(4), the tangential displacement at the heavy frame, is dependent on the stiffness of
the frame. The shell, frames, and coordinate system are shown in figure 8.

Let 1, be the inertia of frameat x =¢ . For a frame that is not subjected
to any external loads, we have from equation (62) of reference 1,

T = - —5 5 4,0 (112)

EL,(n" - n)

From the definitions of Lc and y, we have,

r4 36 Li
I_[ = ) tvrz (113)
V4
Substituting equation (113) into equation (112),
- - 36 1 Lg — —_
vn(z) =35 e 5 Aqn(l) = -WAqn(z) (114)

Substituting equation (114) into the stress~displacement relationships for the semi-
infinite shell given in equation (102) and observing the equations of connection (105},
equations (102) may be written:

- WA—qn(ﬁ) 2., Z Aq () + @ ()

(115)

a4 Zgy  Zgp P, (£)

Using equation (114) and equation (115) enables equations for Vv _(£) and u (1) to
be written in terms of the stress harmonic¢ coefficients, q_n(l) and P, (2) .

W 7Z WZ
;n('e) W + le) W+ le ) an(l)
11 11 (116)
ﬁn(l) p* Z* b, ()

where

Z..2 Z..Z
px = |z -1 2L | g g+ =)z - 12 21
21 (W + le) 22 W + Z11)

62011
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As Ip — o, W — 0. Thus
P* - 0, andv(l)—~0
the rigid bulkhead

, it is obvious that, at the same time, Z* — Z,
In the limit we have the solution, given previously, for

Substituting for the displacement equation (116) into the transmission constant
equation (19), we obtain

qn(ﬂ) Tl T2 T5 TG q'n(o)
Ltz *q *p Et'r _
n | P+ Z pn(z)} T, T, T, Tg||=~1 (0
= (117)
2 By® T, T, T, T L5 (0
non o Ti0 T13 Tag|| 0 P
Et'rz [ Wzll qn(Z)+ Tjn(‘e Tl1 le T15 T16 Et' (o)
2 W+2Z) W I—’z“) o2
2 wZ
Multiply the first row by -Lip 1.

. R, the third row by
n¢ (W+Zq79)
Et'r V) v

. = Q, and subtract both from the fourth.
n W+Z..)

Then multiply the first row by Et'rP/n and the third by Et'Z* and subtract

from the second. By doing this two zeros are introduced into the left-hand-column
matrix of equation (117) which becomes,

y T Tl 5
9,4 1 Ty T5 Tg d (o)
(T _E_t_rp *T (T _Eirp*’r (T _E_'t_rp*']_‘ (T _Et_rp*’]_‘
1 4 n 2 6
0 Et Et'r - ( )
- * - * - * - *
Et'Z*T,) EtZ*T EL'Z*T, ;) Et'Z*T )
r_ r—
n P9 Ty T10 Tis Tia n Pa(®)
0 T. -RT.-QT, T .-RT.-QT.. T, -RT.-QT.. T..-RT -QT Etry (
L11 1779 f1277727%M10 1575713 1676 1j w2 'n©

(118)
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Note that except for the modified form of the square matrix, this equation is
the same as equation (108), referring to the case of a rigid bulkhead. Hence, from
this point on, the solution is the same as for the rigid bulkhead. Using the results
previously obtained, we may write:

™ ]
a,(4) Bi1i Bz By q,(0)
0 = B21 B22 B23 Aqn(o) (119)
2
Et'r™ _
0 By; Bay By 2 Val©
L .
where
B11 = H11 of equation (110)
B12 = le of equation (110)
B13 = H13 of equation (110)
By, = | {1y - BT prT - EvzeTy)+ BT fg % |, - ETpar
21 3 n 1 91 21~ le n 2

rZ
11 ( Et'r \
- * - —_—— L 3 = %*
Et'Z Tlo) + = T, - =— P*T, - Et'Z T13)]
12
Z,.Z rZ
- Et'r 11 22 _Etr oy oo 1
Bye = [ |Zz1 Z,, l(‘T4 n Tolp” EtZ T10) nZ,,

(-5

Byg = [ (Ts'

Et'r . R
P*T, - Et'Z T13)

Et'r Etv R )
= P*T, - EU'Z*T

% - 1 7%
P*T, - Et'Z T14)

—n__ _Et'r oup * )
T (T7 X prr, - BUZAT
12
Z..%
Et r 11%22
Bs [ (T -QTY + = | 2oy~ Z., I(le - RT, - QTy)
24,
*az,, (Ty5-BT5;-QTy }
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Z. . Z rZ
_ Et'r l 11722 _ _ 11
B3a [ Zor " zZ, (T1g =BTy = QT o) - 1z~ (T15~RTg 'QTla)]
12
"o n__ (T, -RT,-QT ]
B33 - [(Tw'RTe'QTm) 1z, T1a "M Ty " Erz 1 1)

The inversion of equations (119) gives the Input Impedance as

p— —

,0) Vit V2 Vi3 a,(4)

E‘qn(o) =1 Ve Voo Vog 0 (120)
%lt"zr—z G LV31 Vas  Vas | 0
. ao n’ Vyy _ -n? [By; By - By, Bs1|

B,©  per?v,  Eer? (P21 Pz PaaPa

The substitution of equation (120) into equation (4) gives the f(n) required for the
general solution of the problem. Figure 10 shows f£(2) for L /L = 0.4. and various
values of v, .

|
|
Free End at a Finite Distance From the Loaded Frame !
Before finding the Input Impedance it is necessary to find the relationships between
the stress and displacement harmonic coefficients for a finite length of shell, free at one

end. The coordinate system is illustrated in figure 9.

The relationships between the harmonic coefficients at the ends of the finite length
of shell are given by equation (19).

At the free end the stresses are zero:
B4 = q ) =0 (121)

Substituting these boundary conditions into equation (19) gives two equations for
Vv_(0) interms of P _(o) , qn(o) ,and T (o) Equating these values of WV, (o) , an equation
£ (0) in terms 8f stress coeff1c1ent% (o) and p_(o) is obtained. Asimilar
equatfclm is given for vn(o) These results are expressed as:
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v _(0) X11
un(o) le
where
It can be shown that X12 = - X21 .
Impedance.

Input Impedance

(122)

62011

These results are used to find the Input

At the loaded frame the stress-displacement relationships for the finite length of

shell are given by equation (122); for the semi-inifinite shell, they are given by equation

(103).

The equations of connection or boundary conditions at the loaded frame are given

by equation (104).

Applying equations (104) to (103) the latter may be rewritten as:

&q (o) - Q ()

—

vy 21, 2

-u,(0) Zyy Zyp

-

After combining equation (122) and

(X3 +2)) Kip-Zyp)

(Xgy = Zgp) Kyp ¥ Zy))

q,(0)

p,(0)

p,(0)

(123) and rearranging, we have:

2, Aq, (o)

Z21

(123)

(124)
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Inverting the square matrix to solve for c(lll&i()) and p_(o), and substituting the
result into equation (122) enables the Input Impeddhce to be &ven:

-1 7

X+ 2 12) 11

11 1) Kp-?

v,

A—qn(o) = ‘Xll X12 (125)

-Z

_(le "z 22) 21

o) Xyt 7

It is known that when the free end is a large distance ( £/L_ > 1.72) from the
loaded frame, its effects become negligible and that Xik equals Zik . This limiting
case is now examined.

Equation (125) becomes

1
L 9 z
v_(0) 224 11
Eg,@ |71 P 1 _z (126)
o 2z, 21
~ 219729
= 1/2 11~ Z
22

This result can also be obtained by applying symmetry conditions En(o) = zin(o)
and u (o) =0.
n

Built -In End at a Finite Distance From the Loaded Frame

All cases in which only a finite length of shell exists on one side of the loaded
frame can be dealt with in the same manner. The boundary conditions at x = £ bring
about the difference. Hence, the case of the free end will be taken as a basis for this and
the two similar cases of a plane of symmetry or a plane of anti-symmetry at x = £

Solution

Substituting the boundary conditions G _(£) = ¥ (¢/) = 0 into equations (19), the

displacement-stress relationships for the finife shell nleng’ch at the loaded frame are found

as follows:
* * _
"a©) X1 %ie %4, (0)
_ =1 x * - (127)
un(o) X21 X599 Pn(O)
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where

The identities of equations (26) have been freely used in deriving these four co-
efficients. It can be shown that X;* 9 = - X4, and that the coefficents converge to the
corresponding Zik as £ /Lc increases. ese facts are to be expected from the
previous work.

Except for the difference in the coefficients of the equations governing the finite
length of shell, the equations of this system are the same as for the case of a free end at
a finite distance from the loaded frame.

Hence, using equations (127) in place of (122) and carrying through the operations
given for the case of the free end, we arrive at the Input Impedance:

X\ vz, X.-z._ |t v/

v, . % 11 11 7127 "12 11

R R L T T -z (29
21~ %21 T2zt %22 21

*
i.e., the Xik replace the Xik of the case of a freeendat x = £

The Input Impedance, substituted in equation (4), gives f(n). Figure 11 shows £(2)
plotted against £/L, .

1t is seen in figure 11 that this is the only case where the effects of a discontinuity
extend beyond £ /L, = 1.00.
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Plane of Symmetry at a Finite Distance From the Loaded Frame

As mentioned in the case of the built-in end, the only differences between this
case and that of the free end at x =/ are the boundary conditions at that point.
= u_(£) = 0 on equations (19) enables the following

Imposing the conditions q _(£) =
stress-displacement relations to Be found for the finite length of frame at x = 0 .

_— 1 —_
n(©) STRRST q,,(0)
_ = . , B (129)
U, (0) Xo1 Xaz p,(0)
where
) (7-3)
X =1 - E_l _T_2 T8 T6 n2 X = TS TG n
11 o 6 [Ta T4 g2 21 [T, T, Et'r
TG TS T6 T8
T, T T Ts
1.5 T. T,
X =-S5 T2 \Ns T\ n 5 Xp- iy
12 6 T6 T2 T4 Et'r 2 4
T, " T, Te Ts
6 8
It can easily be shown that X'12 = - X'21 and that X'ik converges to the

corresponding Zik, as 2/Lc becomes large:

Replacing the coefficients Xik of equation (125) by the Xik of equation (130), we

have the equation for the Input Impedance. )
- i ] \
A P | RS TRT LR S PRSP 21
Zq_(o) 1 %2} | , (130)
Koy = Zgy) Ky + Zy)) “Zy

The f(n) required is obtained by substituting equation (130) into equation (4). The

values of f(2) are given in figure 11 for Lr/Lc = 0.4.
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Plane of Antisymmetry at a Finite Distance From the Loaded Frame

Apart from the different boundary conditions at x = £ , this case is the same as
that of the free end at a finite distance from the loaded frame. If the boundary conditions
0 are applied to equations (19) for the finite length of shell, we obtain

p_(£) =¥ (4) =
the followi%g stress-displacement relationships at the loaded frame:
¥ _(0) X' X! g (o)
v
n _ 11 12 n (131)
_ 1] " _
u,) X1 %o p,(0)
where
(Tu _E) T, Ty
" To T \T;, T 2 T. ~ T,
Xy " | "7, T, T n XUo=M1 2 n
2 2 8 9 2 ¢ o1 YT, T Et'r
_— Et'r 8 9
T, T, T T,
2 1
(5 _ 34.)
T
1 = _x" " _ 1 2 . _]__
X2 = " X9 ; %02 =T T Et'
8 __9
T2 Tl

Note that the identities of equation (26) have been used in the presentation of these coefficients.

Hence, the Input Impedance can be written by replacing the Xik's of equation (125)
by the corresponding Xik's of equation (131).
-1
e tr
Xyt 20 Epp-2Zyp) 21

v ,(0) { - " }
X' x (132)
| X

Zq 0 1711 "2 "o " )
n 01 " Zg)) (Kggt Zyy) Zoy

Z

Substitute equation (132) into equation (4) to give f(n) for this probiem. Figure 11
shows f(2) as a function of £ /L, for Lr/Lc =0.4.
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Additional Relationships Between Coefficients of Transmission
Matrix of a Finite Length of Shell

The six identities of equations (26) were derived as a result of reciprocity

argument, and it is mentioned there that at least three additional relationships exist
between the coefficients.

It can be shown that ig the square matrices of equations (122),“(127), (1'2'9),

and (131), X12 = - le ; X12 = - X21 ; X12 = - X21 and X12 = - X21 .
Using the values of the coefficients given in the four equations mentioned, the following
relationships can be shown to exist between the transmission coefficients.

T4T5-T2T7+T TG—T T, =0

3 178

T4T9-T3T +T2T11-T T, =0

8 179
9 (13¢
T5—T2T4+T6T9-T1T2 = 0
T3T4—T7T9+T1T3—T8T11=0

These equations can be usefully employed as a check on numerical work.

Iockheed Airecraft Corporation,
California Division,

Burbank, Calif., October 1959.
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Figure 1. - General discontinuity in the shell.
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Figure 2. - Exploded view of shell-frame intersection to illustrate
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Figure 4. - Loads and deflections in the shell used in the derivation
of the elements of the transmission matrix.
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Figure 5. - Transmission constants fora finite length of shell n= 2. and L /L =0.4
/Lo .4.
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Figure 10. - A single frame on one side of loaded frame or two rigid bulkheads
symmetrically placed about the loaded frame curves of f(2) and £(3).
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Figure 11.- Finite length of shell on one side of loaded frame £(2) v £ /Lp for various
boundary conditions at x =4 . Lr/Lc =0.4. ’
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